
SecGDB: Graph Encryption for Exact Shortest

Distance Queries with Efficient Updates

Qian Wang†, Kui Ren‡, Minxin Du†, Qi Li§, and Aziz Mohaisen‡

†School of CS, Wuhan University, Wuhan, China
{qianwang,duminxin}@whu.edu.cn

‡Department of CSE, University at Buffalo, SUNY, Buffalo, USA
{kuiren,mohaisen}@buffalo.edu

§Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
qi.li@sz.tsinghua.edu.cn

Abstract. In the era of big data, graph databases have become in-
creasingly important for NoSQL technologies, and many systems (e.g.,
online social networks, world-wide web and electrical grids, etc.) can be
modeled as graphs for semantic queries. Meanwhile, with the advent of
cloud computing, data owners are highly motivated to outsource and s-
tore their massive potentially-sensitive graph data on remote untrusted
servers in an encrypted form, expecting to retain the ability to query
over the encrypted graphs.

To allow effective and private queries over encrypted data, the most well-
studied class of structured encryption schemes are searchable symmetric
encryption (SSE) designs, which encrypt search structures (e.g., inverted
indexes based on keyword-file pairs) for retrieving data files of interest
from remote servers. So far, however, the problem of graph data encryp-
tion that supports customized queries has received limited attention in
the literature. In this paper, we tackle the challenge of designing a Se-
cure Graph DataBase encryption scheme (SecGDB) to encrypt graph
structures and enforce private graph queries over the encrypted graph
database. Specifically, our construction strategically makes use of efficient
additively homomorphic encryption and garbled circuits to support the
shortest distance queries with optimal time and storage complexities. To
achieve better amortized time complexity over multiple queries, we fur-
ther propose an auxiliary data structure called query history and store
it on the remote server to act as a “caching” resource. Compared with
the state-of-the-art solutions, our design returns exact shortest distance
query results instead of approximate ones and allows efficient graph up-
date queries over large-scale encrypted graphs. We prove that our con-
struction is adaptively semantically-secure in the random oracle model
and finally implement and evaluate it on various representative real-world
datasets, showing that our approach is practically efficient in terms of
both storage and computation.

Keywords: Graph encryption; shortest distance query; homomorphic
encryption; garbled circuit.
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1 Introduction

Graphs are used in a wide range of application domains, including social network-
s, interactive and online games, online knowledge discovery, computer networks,
and the world-wide web, among others. For example, online social networks (OS-
N) such as Facebook and LinkedIn employ large social graphs with millions or
even billions of vertices and edges in their operation. As a result, various sys-
tems have been recently proposed to handle massive graphs efficiently, where
examples include Pregel [36], GraphLab [35], Horton [45] and TurboGraph [21].
These database applications allow for querying, managing and analyzing large-
scale graphs in an intuitive and expressive way.

With the increased popularity of cloud computing, data users, including both
individuals and enterprises, are highly motivated to outsource their (potentially
huge amount of sensitive) data that may be abstracted and modeled as large
graphs to remote cloud servers to reduce the local storage and management
costs [28, 3, 13, 47]. However, database outsourcing also raises data confidentiality
and privacy concerns due to data owners’ loss of physical data control. Privacy-
sensitive data therefore should be encrypted locally before outsourcing it to
the untrusted cloud. Data encryption, however, hinders data utilization and
computation, making it difficult to efficiently retrieve or query data of interest
as opposed to the case with plaintext.

To address this challenge, the notion of structured encryption was first in-
troduced by Chase and Kamara [8]. Roughly speaking, a structured encryption
scheme encrypts structured data in such a way that it can be privately queried
through the use of a specific token generated with knowledge of the secret key.
Specifically, they presented approaches for encrypting (structured) graph data
while allowing for efficient neighbor queries (i.e., queries that return all vertices
adjacent to a specified vertex), adjacency queries (i.e., queries that would re-
turn whether two vertices are adjacent or not) and focused subgraph queries on
labeled graphs (i.e., queries to obtain pages ranking for a search keyword on a
graph).

Despite all of these important types of queries, finding the shortest distance
between two vertices, one of the most fundamental graph operations, was not
supported. The shortest distance queries are not only building blocks for various
more complex algorithms, but also have applications of their own. Such appli-
cations include finding the shortest path for one person to meet another in an
encrypted social network graph, seeking the shortest path with the minimum
delay in an encrypted networking or telecommunications abstracted graph, or
performing a privacy-preserving GPS guidance in which one party holds the
encrypted map while the other knows his origin and destination.

Recently, Meng et al. [38] addressed the graph encryption problem by pre-
computing a data structure called the distance oracle from an original graph.
They leveraged somewhat homomorphic encryption and standard private key
encryption for their construction, thus answering shortest distance queries ap-
proximately over the encrypted distance oracle. Although their experimental
results show that their schemes are practically efficient, the accuracy is sacri-
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ficed for using the distance oracle (i.e., only the approximate distance or even
the negative result is returned). On the one hand, the distance oracle based
methods only provide an estimate on the length of the shortest path. On the
other hand, the exact path itself could also be necessary and important in many
of the aforementioned application scenarios. Furthermore, both of the previous
solutions only deal with static graphs [8, 38]: the outsourced encrypted graph
structure cannot explicitly support efficient graph updates, since it requires to
either re-encrypt the entire graph (e.g., in [38], one has to pre-compute the cor-
responding distance oracle based on the updated graph, encrypt the graph, and
then outsource it to the server for future queries), or make use of generic and
expensive dynamization techniques similar to [9].

To tackle the practical limitations of the state-of-the-art, we propose a new
Secure Graph DataBase encryption scheme (SecGDB) that supports both ex-
act shortest distance queries and efficient dynamic operations. Specifically, our
construction addresses four major challenges. First, to seek the best tradeof-
f between accuracy and efficiency, we process the graph itself instantiated by
adjacency lists instead of encrypting either the distance oracle pre-computed
from the original graph or the adjacency matrix instantiation. As a result, our
scheme can be built on general graphs (i.e., sparse or dense graphs) with the
benefit of the adjacency list representation. Second, to compute the exact short-
est path over the encrypted graph, we propose a hybrid approach that combines
additively homomorphic encryption and garbled circuits to implement Dijkstra’s
algorithm [12] with the priority queue in a secure manner. Third, to enable dy-
namic updates of encrypted graphs, we carefully design an extra encrypted data
structure to store the relevant information (e.g., neighbor information of nodes
in adjacency lists) which will be used to perform modifications homomorphically
over the graph ciphertexts. Fourth, to further optimize the performance of the
query phase, we introduce an auxiliary data structure called the query histo-
ry by leveraging the previous queried results stored on the remote server as a
“caching” resource; namely, the results for subsequent queries can be returned
immediately without incurring further cost.

Our main contributions are summarized as follows.

– Functionality and efficiency. We propose SecGDB to support exact shortest
distance queries with optimal time and storage complexity. We further obtain
an improved amortized running time over multiple queries with the auxiliary
data structure called “query history”.

– Dynamics. We design an additional encrypted data structure to facilitate
efficient graph updates. Compared with the state-of-the-art [8, 38], which
consider only static data, SecGDB performs dynamic (i.e., addition or re-
moval of specified edges over the encrypted graph) operations with O(1) time
complexity.

– Security, implementation and evaluation. We formalize our security model
using a simulation-based definition and prove the adaptive semantic security
of SecGDB under the random oracle model with reasonable leakage. We im-
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plement and evaluate the performance of SecGDB on various representative
real-world datasets to demonstrate its efficiency and practicality.

1.1 Related Work

Song et al. [46] introduced the notion of searchable symmetric encryption (SSE),
a technique that can be viewed as a specialization of the structured encryption,
which received an extensive attention in the past few years [16, 19, 9, 28, 27, 7,
47, 20]. The notion of adaptive semantic security of SSE schemes was first intro-
duced by Curtmola et al. [9] and further generalized to the setting of structured
encryption in [8]. Since then, a great effort has been devoted to constructing
efficient SSE schemes. Generally speaking, these SSE schemes usually encrypt
inverted vectors or search trees for the special purpose of performing keyword
based (e.g., single keyword or multiple keywords) search over the encrypted doc-
ument collections. Apparently, generic cryptographic primitives such as the fully
homomorphic encryption [15] and oblivious RAM [17] can also be applied to re-
alize almost all functionalities for structured encryptions. In practice, however,
these generic solutions would incur prohibitively a huge amount computation and
communication that could be impractical for both resource-constrained clients
and the more powerful cloud servers.

Recently, other customized approaches have been developed for privacy-
preserving shortest path computation. Aly et al. [1] investigated the problem
of solving traditional graph problems, such as the shortest path problem, using
multi-party computation techniques. However, their scheme has a cubic com-
plexity in the number of vertices, which makes it impractical for large sparse
graphs due to the adjacency matrix representation of the graph. Another line
of work has focused on developing data oblivious algorithms for shortest path
computation [3] or combining Dijkstra’s algorithm with oblivious data structures
to compute on sparse planer graphs [48], thus hiding partial information about
the access pattern (e.g., the type of operations etc.). However, the former has
a quadratic complexity in number of vertices and the latter incurs bandwidth
blowup and requires expensive offline computations. An oblivious secure com-
putation framework combining garbled circuits and ORAM proposed by [34]
requires communication on the order of GB and running times ranging from
tens of minutes to several hours for a single query on a network graph with 1024
vertices. It is clear that the framework is not practically efficient despite pro-
viding strong security guarantees. Recently, Wu et al. [49] developed a privacy-
preserving navigation protocol based on private information retrieval (PIR) and
garbled circuits, and the routing information of the original street-map graph
is compressed for the shortest path computation. We note that the navigation
protocol is not applicable in our model where the graph itself stores sensitive
information and must be blinded. Furthermore, interactions between the client
and the server are involved in their protocol to compute each intermediate hop
for every requested shortest path query.

The most related work to ours is due to Meng et al. [38], in which they
presented structured encryption schemes for supporting approximate shortest
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distance queries. However, their distance oracle based constructions return only
the approximate distance results without generating the exact path after query,
and they cannot explicitly support efficient graph updates.

2 Preliminaries and Notations

We begin by outlining some notations. Given a graph G = (V,E) which consists
of a set of vertices V and edges E, we denote its total number of vertices as
n = |V | and its number of edges as m = |E|. G is either undirected or directed.
If G is undirected, then each edge in E is an unordered pair of vertices, and we
use len(u, v) to denote the length of edge (u, v), otherwise, each edge in E is an
ordered pair of vertices. In an undirected graph, deg(v) is used to denote the
number of vertices adjacent to the vertex v (i.e., degree). For a directed graph,
we use deg−(v) and deg+(v) to denote the number of edges directed to vertex v

(indegree) and out of vertex v (outdegree), respectively. A shortest distance query
q = (s, t) asks for the length (along with the route) of the shortest path between
s and t, which we denote by dist(s, t) or distq. [n] denotes the set of positive

integers less than or equal to n, i.e., [n] = {1, 2, . . . , n}. We write x
$
 − X to

represent an element x being uniformly sampled at random from a set X. The
output x of a probabilistic algorithm A is denoted by x  A and that of a
deterministic algorithm B by x := B. Given a sequence of elements v, we refer
to the ith element as v[i] or vi and to the total number of elements in v by |v|. If
A is a set then |A| refers to its cardinality, and if s is a string then |s| refers to its
bit length. We denote the concatenation of n strings s1, . . . , sn by hs1, . . . , sni,

and also denote the high-order |s2|-bit of the string s1 by s
|s2|
1 .

We also use various basic data structures including linked lists, arrays and
dictionaries. Specifically, a dictionary T (also known as a map or associative
array) is a data structure that stores key-value pairs (k, v). If the pair (k, v) is
in T, then T[k] is the value v associated with k. An insertion operation of a
new key-value pair (k, v) to the dictionary T is denoted by T[k] := v. Similarly,
a lookup operation takes a dictionary T and a specified key k as input, then
returns the associated value v denoted by v := T[k].

2.1 Cryptographic Tools

Homomorphic encryption. Homomorphic encryption allows certain compu-
tations to be carried out on ciphertexts to generate an encrypted result which
matches the result of operations performed on the plaintext after being decrypt-
ed. In a nutshell, a fully homomorphic encryption scheme (FHE) [44, 15, 6] allows
evaluation of arbitrarily complex functions on encrypted data, and the corner-
stone of FHE is the notion of a “somewhat homomorphic” encryption (SHE)
scheme, which allows evaluation of functions below some complexity threshold.
In this work, we only require the evaluation to efficiently support any number
of additions, and there are many cryptosystems satisfying with this property. In
particular, we use the Paillier cryptosystem [42] in our construction.
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In the Paillier cryptosystem, the public (encryption) key is pkp = (n =
pq, g), where g 2 Z

⇤
n2 , and p and q are two large prime numbers (of equivalent

length) chosen randomly and independently. The private (decryption) key is
skp = ('(n), '(n)−1 mod n). Given a message a, we write the encryption of a
as JaKpk, or simply JaK, where pk is the public key. The encryption of a message
x 2 Zn is JxK = gx · rn mod n2, for some random r 2 Z

⇤
n. The decryption of

the ciphertext is x = L(JxKϕ(n) mod n2) · '−1(n) mod n, where L(u) = u−1
n

.
The homomorphic property of the Paillier cryptosystem is given by Jx1K · Jx2K =
(gx1 · rn1 ) · (g

x2 · rn2 ) = gx1+x2(r1r2)
n mod n2 = Jx1 + x2K.

Pseudo-random functions (PRFs) and permutations (PRPs). Let F :
{0, 1}λ ⇥ {0, 1}⇤ ! {0, 1}⇤ be a PRF, which is a polynomial-time computable
function that cannot be distinguished from random functions by any probabilistic
polynomial-time adversary. A PRF is said to be a PRP when it is bijective.
Readers can refer to [29] for the formal definition and security proof.

Oblivious transfer. Parallel 1-out-of-2 Oblivious Transfer (OT) of m l-bit
strings [39, 25], denoted as OTm

l , is a two-party protocol run between a chooser
C and a sender S. For i = 1, . . . ,m, the sender S inputs a pair of l-bit strings
s0i , s

1
i 2 {0, 1}

l and the chooser C inputs m choice bits bi 2 {0, 1}. At the end
of the protocol, C learns the chosen strings sbii but nothing about the unchosen

strings s1−bii , whereas S learns nothing about the choice bi.

Garbled circuits. Garbled circuits were first proposed by Yao [50, 51] for secure
two-party computation and later proven practical by Malkhi et al. [37]. At a high
level, garbled circuits allow two parties holding inputs x and y, respectively, to
jointly evaluate an arbitrary function f(x, y) represented as a boolean circuit
without leaking any information about their inputs beyond what is implied by
the function output. In a garbled circuits protocol, one party (the generator)
converts a circuit computing f into an “encrypted” version. The other party (the
evaluator) then obliviously computes the output of the circuit without learning
any intermediate values.

Several optimization techniques have been proposed in the literature to con-
struct the standard garbled circuits. Kolensikov et al. [31] introduced an ef-
ficient method for creating garbled circuits which allows “free” evaluation of
XOR gates, namely without incurring any communication or cryptographic op-
erations. Pinkas et al. [43] proposed an approach to reduce the size of garbled
gates from four to three entries, thus saving 25% of the communication overhead.

2.2 Fibonacci heap

Fibonacci heap [14] is a data structure for implementing priority queues, which
consists of a collection of trees satisfying the minimum-heap property; that is,
the key of a child is always greater than or equal to the key of the parent. This
implies that the minimum key is always at the root of one of the trees. Generally,
a heap data structure supports the following six operations.

– Make-Heap() creates and returns a new heap containing no elements.
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– Insert(H, x) inserts node x, whose key field key(x) has already been filled,
into heap H.

– Minimum(H) returns a pointer to the node with the minimum key in the
heap H.

– Extract-MIN(H) deletes the node with the minimum key from heap H, and
returns a pointer to that node.

– Decrease-Key(H, x) assigns to node x in the heap H the new key value key(x),
which is assumed to be no greater than its current key value.

– Delete(H, x) deletes node x from heap H.

Compared with many other priority queue data structures including the Bi-
nary heap and Binomial heap, the Fibonacci heap achieves a better amortized
running time [14].

3 System model and definitions

In this work, we consider the problem of designing a structured encryption
scheme that supports the shortest distance queries and dynamic operations over
an encrypted graph stored on remote servers efficiently.

At a high level, as shown in Figure 1, our construction contains three entities,
namely the client C, the server S and the proxy P. In the initialization stage,
the client C processes the original graph G to obtain its encrypted form ⌦G and
outsources it to the cloud server S. Meanwhile, the client C distributes partial
secret key sk to the proxy P. The privacy holds as long as the server S and
the proxy P do not collude (e.g., they respectively belong to two independent
cloud service providers). This architecture of two non-colluding entities has been
commonly used in the related literature [4, 13, 41]. Subsequently, to enable the
shortest distance query over the encrypted graph ⌦G, the client generates a
query token ⌧q based on the query q and submits it to the cloud server S.
During the query phase, we adopt Yao’s garbled circuits: the cloud server S who
acts as the generator, and the proxy P who acts as the evaluator jointly run the
secure comparison protocol. Finally, the encrypted shortest distance along with
the path are returned to the client C. In addition, the graph storage service in
consideration is dynamic, such that the client C may add or remove edges to or
from the encrypted graph ⌦G as well as modify the length of the specified edge.
To do so, the client generates an update token ⌧u corresponding to the dynamic
operations. Given ⌧u, the server S can securely update the encrypted graph ⌦G.

Formally, the core functionalities of our system are listed as below.

Definition 1. An encrypted graph database system supporting the shortest dis-
tance query and dynamic updates consists of the following five (possibly proba-
bilistic) polynomial-time algorithms/protocols:

sk  Gen(1λ): is a probabilistic key generation algorithm run by the client. It
takes as input a security parameter λ and outputs the secret key sk.

⌦G  Enc(sk,G): is a probabilistic algorithm run by the client. It takes as input
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Fig. 2: The secure comparison circuit.

a secret key sk and a graph G, and outputs an encrypted graph ⌦G.

distq  Dec(sk, cq): is a deterministic algorithm run by the client. It takes as
input a secret key sk and an encrypted result cq, and outputs distq including the
shortest distance as well as its corresponding path.

(cq;σ
0)  DistanceQuery(sk, q;⌦G, σ): is a (possibly interactive and probabilis-

tic) protocol run between the client and the server1. The client takes as input a
secret key sk and a shortest distance query q, while the server takes as input the
encrypted graph ⌦G and the query history σ (which is empty in the beginning).
During the protocol execution, a query token ⌧q is generated by the client based
on the query q and then sent to the server. Upon completion of the protocol, the
client obtains an encrypted result cq while the server gets a (possibly new) query
history σ0.

(?;⌦0G, σ)  UpdateQuery(sk, u;⌦G): is a (possibly interactive and probabilis-
tic) protocol run between the client and the server. The client takes as input a
secret key sk and an update object u (e.g., the edges to be updated), while the
server takes as input the encrypted graph ⌦G. During the protocol execution, an
update token ⌧u is generated by the client based on the object u and then sent
to the server. Upon completion of the protocol, the client gets nothing while the
server obtains an updated encrypted graph ⌦0G and a new empty query history
σ.

3.1 Security Definitions

Intuitively, an queryable encrypted graph database system should meet some
security guarantees. First, an adversary cannot forge the shortest distance or
update queries without the secret key. Second, given an encrypted graph, an
adversary cannot learn any information about the underlying graph structure.

1 A protocol P run between the client and the server is denoted by (u; v) ← P (x; y),
where x and y are the client’s and the server’s inputs, respectively, and u and v are
the client’s and the server’s outputs, respectively.
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Third, the tokens generated for a sequence of adaptive queries (including the
shortest distance or the update queries) do not disclose any information about
the original query objects. As in previous SSE systems [9, 28, 27, 20, 7] we also
relax the security requirements appropriately by allowing some reasonable infor-
mation leakage to the adversary in order to obtain higher efficiency. To capture
this relaxation, we follow [9, 8, 28, 20] to parameterize the information by using
a tuple of well-defined leakage functions (see Section 5).

Note that a secure comparison protocol based on the Yao’s garbled circuits is
constructed as a subroutine in the shortest distance query phase, and we assume
that the server and the proxy are both semi-honest entities in our setting; they
both run the protocol exactly as specified without any deviations, but try to learn
extra information from their views of the protocol. A formal proof of security
in the semi-honest model was given in [33]. Besides, various tools (e.g., cut-and-
choose techniques) can be applied to further extend the setting to handle the
presence of malicious adversaries [37, 32, 26, 40].

In the following definition, we adapt the the notion of adaptive semantic
security from [9, 8, 28] to our encrypted graph database system.

Definition 2. (Adaptive semantic security) Let (Gen,Enc,Dec,DistanceQuery,
UpdateQuery) be a dynamic encrypted graph database system and consider the
following experiments with a stateful adversary A, a stateful simulator S and
three stateful leakage functions L1, L2 and L3:
RealA(λ) : The challenger runs Gen(1λ) to generate the key sk. A outputs G

and receives ⌦G  Enc(sk,G) from the challenger. A then makes a polynomial
number of adaptive shortest distance queries q or update queries u. For each q,
the challenger acts as a client and runs DistanceQuery with A acting as a server.
For each update query u, the challenger acts as a client and runs UpdateQuery
with A acting as a server. Finally, A returns a bit b as the output of the exper-
iment.
IdealA,S(λ) : A outputs G. Given L1(G), S generates and sends ⌦G to A. A
makes a polynomial number of adaptive shortest distance queries q or update
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queries u. For each q, S is given L2(G, q), and simulates a client who runs
DistanceQuery with A acting as a server. For each update query u, S is given
L3(G, u), and simulates a client who runs UpdateQuery with A acting as a server.
Finally, A returns a bit b as the output of the experiment.

We say such a queryable encrypted graphs database system is adaptively
(L1,L2,L3)-semantically secure if for all probabilistic polynomial-time (PPT)
adversaries A, there exists a probabilistic polynomial-time simulator S such that

|Pr[RealA(λ) = 1]− Pr[IdealA,S(λ) = 1]|  negl(λ),

where negl(·) is a negligible function.

4 Our construction: SecGDB

In this section, we present our encrypted graph database system–SecGDB, which
efficiently supports the shortest distance query and the update query (i.e., to
add, remove and modify a specified edge).

4.1 Overview

We assume that an original graph is instantiated by adjacency lists, and the
length of edge (u, v) is stored in the node for v in the adjacency list for u.
Namely, every node in each adjacency list contains a pair of the neighboring
vertex and the length of the corresponding edge (i.e., vertex and length pair).

Our construction is inspired by [28]. The key idea is as follows. During the
initialization phase, we randomly shuffle all the nodes and place them in an
array. That is, we place every node of each adjacency list at a random location
in the array while updating the pointers so that the “logical” integrity of the lists
are preserved. We then use the Paillier cryptosystem to encrypt the length of
the edge in each node, and use a “standard” private-key encryption scheme [29]
to blind the entire node. In the shortest distance query phase, if the query
has been submitted before or was a subset of the query history, the encrypted
result can be immediately returned to the client; otherwise, we implement the
Dijkstra’s algorithm (conceptually a breadth-first search) with the aid of an
advanced data structure (i.e., Fibonacci heap) in a secure manner to answer the
shortest distance query. Specifically, we propose a hybrid approach by leveraging
the additive homomorphic property and the garbled circuits to achieve our goal.
Meanwhile, the query history is updated based on the query results. To support
efficient dynamic operations on the encrypted graph, we generate the relevant
update token, which allows the server to add or remove the specified entry to
and from the array. After finishing the updates, the query history is rebuilt for
future use.

4.2 Initialization Phase

We now describe the details of the preparation stage as well as the construction
of the encrypted graph. Intuitively, the initialization phase consists of Gen and
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Algorithm 1 Graph Enc algorithm

Input: G = (V,E), sk
Output: ΩG

1: Set n = |V |,m = |E|;
2: Initialize an array AG of size m + z;
3: Initialize two dictionaries TG,TD of size n+1

and m;
4: Initialize a random permutation π over [m+

z];
5: Initialize a counter ctr = 1;
6: for each vertex u 2 V do

7: Generate Ku := Gk3
(u);

8: for i = 1 to deg+(u) do

9: Encrypt the length of the edge (u, vi)
under the Paillier cryptosystem ci  
Jlen(u, vi)Kpkp

10: if i = 1 and i 6= deg+(u) then

11: Set Ni := hPk1
(vi), Fk2

(vi), ci, π(ctr
+1)i;

12: Set Di := h0, 0, π(ctr), π(ctr +
1), Pk1

(hu, vi+1i)i;

13: else if i 6= 1 and i = deg+(u) then

14: Set Ni := hPk1
(vi), Fk2

(vi), ci, NULLi;

15: Set Di := hPk1
(hu, vi−1i), π(ctr −

1), π(ctr),0, 0i;

16: else if i = 1 and i = deg+(u) then

17: Set Ni := hPk1
(vi), Fk2

(vi), ci, NULLi;

18: Set Di := h0, 0, π(ctr), 0, 0i;
19: else

20: Set Ni := hPk1
(vi), Fk2

(vi), ci, π(ctr
+1)i;

21: Set Di := hPk1
(hu, vi−1i), π(ctr −

1), π(ctr),π(ctr+1), Pk1
(hu, vi+1i)i;

22: end if

23: Sample ri
$
 − {0, 1}λ;

24: Store the encrypted Ni in the array
AG[π(ctr)] := hNi ⊕H(Ku, ri), rii;

25: Store the encrypted Di in the dic-
tionary TD[Pk1

(hu, vii)] := Di ⊕
Fk2

(hu, vii);

26: Increase ctr = ctr + 1;
27: end for

28: Store a pointer to the head n-
ode of the adjacency list for u
in the dictionary TG[Pk1

(u)] :=
haddr(N1), Pk1

(hu, v1i), Kui ⊕ Fk2
(u);

29: end for

30: for i = 1 to z do

31: Set Fi := h0, π(ctr+1)i ;
32: if i = z then

33: Set Fi := h0, NULLi;
34: end if

35: Store the unencrypted Fi in the array
AG[π(ctr)] := Fi;

36: Increase ctr = ctr + 1;
37: end for

38: Store a pointer to the head node of the
free list in the dictionary TG[free] :=
haddr(F1), 0i;

39: Output the encrypted graph ΩG =
(AG,TG,TD);

Enc as presented in Definition 1. The scheme uses the Paillier cryptosystem, and
three pseudo-random functions P , F and G, where P is defined as {0, 1}λ ⇥
{0, 1}⇤ ! {0, 1}λ, F is defined as {0, 1}λ⇥{0, 1}⇤ ! {0, 1}⇤ and G is defined as
{0, 1}λ ⇥ {0, 1}⇤ ! {0, 1}λ. We also use a random oracle H which is defined as
{0, 1}⇤ ! {0, 1}⇤.
Gen(1λ): Given a security parameter λ, generate the following keys uniformly at
random from their respective domains:

– three PRF keys k1, k2, k3
$
 − {0, 1}λ for Pk1

(·), Fk2
(·) and Gk3

(·), respective-
ly;

– (skp, pkp) for the Paillier cryptosystem.

The output is sk = (k1, k2, k3, skp, pkp), where skp is sent to the proxy through
a secure channel.

As shown in Algorithm 1, the setup procedures are done in the first five
steps. From line 6 to 29, the length of the edge is encrypted under the Paillier
cryptosystem and the entire node Ni is encrypted by XORing an output of the
random oracle H. Meanwhile, the neighboring information of each node Ni (i.e.,
the nodes following and previous to Ni in the original adjacency lists, and the
corresponding positions in AG) constitutes the dual node Di, and the encrypted
dual node will be stored in the dictionary TD. Generally speaking, TD stores
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the pointer to each edge, and it is used to support efficient delete updates on the
encrypted graph. After the aforementioned operations are done, the address of
each head node will be encrypted and stored in the dictionary TG, namely, TG

stores the pointer to the head of each adjacency list. The remaining z cells in
the array construct an unencrypted free list, which is used in the add updates.
To ensure the size of all the entries in AG, TG and TD is identical, we should
pad by a string of 0’s (i.e., 0). Finally, we output the encrypted graph ⌦G.

Figure 3 gives an illustrative example of the Enc algorithm to construct the
encrypted graph from a directed graph with four vertices v1, v2, v3 and v4 as
well as five edges. All the nodes contained in the original (three) adjacency lists
are now stored at random locations in AG, and the dictionaries TG and TD are
also shown in Figure 3. Note that in a real encrypted graph, there would be
padding to hide partial structural information of the original graph (as will be
discussed in Section 5); we omit this padding for simplicity in this example.

4.3 Shortest Distance Query Phase

In this section, we will describe the process of performing the exact shortest
distance query over the encrypted graph, as summarized in Algorithm 2.

The DistanceQuery protocol shown in Algorithm 2 works as follows. First, the
client generates the query token ⌧q based on a query q = (s, t), and then sends
it to the server. If the token has been queried before or acts as a subpath of the
query history σ, the server returns the result cq (cq ⇢ σ) to the client immedi-
ately; otherwise, the server executes the Dijkstra’s algorithm with the aid of a
Fibonacci heap H in a private way. Concretely, the server first reads off the ver-
tices that are adjacent to the source s and inserts to the heap H (line 14 to 22).
Subsequently, each iteration of the loop from line 23 to 49 starts by extracting
the vertex ↵ with the minimum key. If the vertex ↵ is the requested destina-
tion ⌧2, the server updates the query history σ based on the newly-obtained
path, computes the encrypted result cq via reverse iteration and returns it to
the client. Else, the server recovers the pointer to the head of the adjacency list
for the vertex ↵, and then retrieves nodes in the adjacency list. Specifically, for
the node Ni, once an update of ⇠[↵i] occurs it indicates that a shorter path to
↵i via ↵ has been discovered, the server then updates the path. Next, the server
either runs Insert(H, ↵i) (if ↵i is not in H) or Decrease-Key(H, ↵i, key(↵i)). It is
worth noting that both the conditional statement ⇠[↵] · ci < ⇠[↵i] and some spe-
cific operations on the Fibonacci heap (e.g., Extract-MIN) require performing a
comparison on the encrypted data. Hence we build a secure comparison protocol
(see Section 4.3) based on the garbled circuits and invoke it as a subroutine.

Finally, the client runs Dec(cq, sk) to obtain the distq as follows. Given cq,
the client parses it as a sequence of hc1, c2i pairs, and for each pair, the client
decrypts c1 (the path) and c2 (the distance) by using k1 and skp, respectively.

Remarks. Conceptually, the history σ consists of all previous de-duplicated
queried results. For a new query, the server traverses σ and checks whether the
new query belongs to a record in σ. For example, let history σ consist of a
shortest path from s to t (i.e., {s, . . . , u, . . . , v, . . . , t}), then for a new query
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Algorithm 2 DistanceQuery protocol

Input:

The client C’s input is sk, q = (s, t);
The server S’s input is ΩG, σ;

Output:

The client C’s output is cq ;
The server S’s output is σ0;

1: C : compute τq := (Pk1
(s), Pk1

(t), Fk2
(s));

2: C ) S : output τq to the server;
3: S : parse τq as (τ1, τ2, τ3);
4: if TG[τ1] =? or TG[τ2] =? then

5: S ) C: return ? to the client;
6: else if {τ1, τ2} ⇢ σ then

7: S ) C: return cq to the client;
8: else

9: S : initialize a Fibonacci heap H  
Make-Heap();

10: S : initialize two dictionaries ξ and path;
11: S : compute haddr1, str, Ksi := TG[τ1]⊕

τ3;
12: S : parse AG[addr1] as hN

0
1, r1i;

13: S : compute N1 := N
0
1 ⊕H(Ks, r1);

14: while addri+1 6= NULL do

15: S : parse Ni as hαi, βi, ci, addri+1i;
16: S : store path[αi] := hτ1, cii
17: S : set ξ[αi] := ci and key(αi) :=

ξ[αi];
18: S : run Insert(H, αi) with the key(αi);
19: S : parse AG[addri+1] as hN

0
i+1, ri+1i;

20: S : compute Ni+1 := N
0
i+1 ⊕

H(Ks, ri+1);
21: S : increase i = i + 1;
22: end while

23: repeat

24: S : parse Extract-MIN(H) as
hα, key(α)i;

25: if α = τ2 then

26: S : update σ0 based on path;
27: S ) C : return cq to the client;
28: S : break;
29: end if

30: S : compute haddr1, str, Kui :=
TG[α]⊕ β;

31: S : parse AG[addr1] as hN
0
1, r1i;

32: S : compute N1 := N
0
1 ⊕H(Ku, r1);

33: while addri+1 6= NULL do

34: S : parse Ni as hαi, βi, ci, addri+1i;
35: if ξ[α] · ci < ξ[αi] then

36: S : update ξ[αi] := ξ[α] · ci;
37: S : set key(αi) := ξ[αi];
38: S : store path[αi] := hα, cii;
39: end if

40: if αi 62 H then

41: S : run Insert(H, αi) with the
key(αi);

42: else

43: S : run Decrease-Key(H, αi, key(αi));
44: end if

45: S : parse AG[addri+1] as
hN0i+1, ri+1i;

46: S : compute Ni+1 := N
0
i+1 ⊕

H(Ku, ri+1);
47: S : increase i = i + 1;
48: end while

49: until H is empty
50: end if

q = (u, v), the corresponding encrypted result cq = {u, . . . , v} where cq ⇢ σ can
be returned immediately. Note that only lookup operations (of dictionary) are
required, thus making the whole process highly efficient.

Secure Comparison Protocol We now present the secure comparison proto-
col which is based on the garbled circuits [24, 50] for selecting the minimum of
two encrypted values. This subroutine is implemented by the circuit shown in
Figure 2, and we use a CMP circuit and two SUB circuits constructed in [30] to
realize the desired functionality.

At the beginning, the server has two encrypted values Ja1K and Ja2K and
the proxy has the secret key skp. W.l.o.g., we assume that the longest shortest
distance between any pair of vertices (i.e., diameter [22]) lies in [2l], namely,
a1 and a2 are two l-bit integers. Instead of sending Ja1K and Ja2K to the proxy,
the server first masks them with two k-bit random numbers r1 and r2 (e.g.,
Ja1 + r1K = Ja1K · Jr1K) respectively, where k is a security parameter (k > l).
Then the server’s inputs are r1 and r2, and the proxy’s inputs are a1 + r1 and
a2 + r2. Finally, the output single bit x implies the comparison result: if x = 1,
then a1 > a2; 0 otherwise. Note that masking here is done by performing addition
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SUB circuit CMP circuit Total circuit

k l 2k + l

Table 1: The number of non-free binary gates.

over the integers which is a form of statistical hiding. More precisely, for a l-
bit integer ai and a k-bit integer ri, releasing ai + ri gives statistical security
of roughly 2l−k for the potential value ai. Therefore, by choosing the security
parameter k properly, we can make this statistical difference arbitrarily low [24].

Since we adopt the free-XOR technique [31] in our construction, the XOR
gates do not contribute much to the cost of the garbled circuits since no cryp-
tographic operations are needed. Table 1 summarizes the number of non-XOR
gates in each of our circuits.

Packing Optimization. It is worth noting that the message space of the
Paillier cryptosystem is much greater than the space of the blinded values. We
can therefore provide a great improvement in both computation time and band-
width by leveraging the packing technique. The basic idea is to send one ci-
phertext in the form Jh(ai+1 + ri+1), . . . , (ai+p + ri+p)iK instead of p cipher-
texts of the form Jai + riK, where p = 1024

k
(1024-bit modulus used in Paillier

cryptosystem). More specifically, given two blinded ciphertexts Ja1 + r1K and
Ja2 + r2K, the server can aggregate them into a single ciphertext of the form

Jh(a1 + r1), (a2 + r2)iK = Ja1 + r1K
2k · Ja2 + r2K. Then the “packed” ciphertext

can be obtained via aggregating p ciphertexts in the same manner.
We note that another line of work using specialized homomorphic encryp-

tion, such as Goldwasser-Micali cryptosystem [18, 5] or DGK cryptosystem [10,
11], can also solve the above millionaires problem. However, applying the homo-
morphic encryption based solution is not only time-consuming but also incurs
prohibitively high communication overhead due to the bitwise encryption. More-
over, the entire cost of each comparison will be included in the query phase, and
this is not desirable in practice. Fortunately, using garbled circuits allows us to
move as many of expensive operations (e.g., the computationally expensive OT
and the creation of garbled circuits as well as the transfer of garbled circuits)
into a pre-computation (offline) stage. In fact, the server can prepare the garbled
circuits and send them together with the translation-tables to the proxy before
a shortest distance query is submitted. Besides, we use the standard technique
of [2] to pre-compute OTs, and the extensions of [25] can be used to reduce
an arbitrary number of OTs to a constant number c, where c is a security pa-
rameter. Later in the query (online) phase, the server sends the garbled values
corresponding to its input bits to the proxy, and the online part of the OT proto-
col is executed by the proxy to obtain its own garbled values. Using the garbled
inputs, the proxy evaluates the garbled circuit for each comparison, obtains the
result from the translation-table and sends it back to the server.

4.4 Supporting Encrypted Graph Dynamics

We next discuss the support of update operations over the encrypted graph. Here,
we do not particularly consider the addition and removal of vertices, because the
update of the vertex can be viewed as the update of a collection of related edges.
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Algorithm 3 UpdateQuery protocol

Input:

The client C’s input is sk, u;
The server S’s input is ΩG;

Output:

The client C’s output is ?;
The server S’s output is Ω0

G, σ;

a) Adding new edges
At the client C:
1) u contains information about newly-added
edge (v1, v2) with the length len(v1, v2);
2) compute the update token τu :=

(Pk1
(v1), Fk2

(v1)
|haddr,stri|, Pk1

(hv1, v2i), Fk2
(h

v1, v2i), N), where N = hhPk1
(v2), Fk2

(v2), JlenK, 0i
⊕H(Kv1

, r), ri;
C ) S : output τu to the server;
At the server S:
1) parse τu as (τ1, τ2, τ3, τ4, τ5) and return ?
if τ1 is not in TG;
2) compute haddr1, 0i := TG[free];
3) parse AG[addr1] as h0, addr2i;
4) update the pointer to the next free node
TG[free] := haddr2, 0i;

5) compute haddr3, stri := TG[τ1]
|haddr,stri| ⊕

τ2;
6) parse τ5 as hN0, ri and set AG[addr1] :=
hN0 ⊕ h0, addr3i, ri;
7) update the pointer to the newly-added n-

ode TG[τ1] := TG[τ1]
|haddr,stri|⊕haddr3, stri⊕

haddr1, τ3i;

8) store TD[τ3] := h0, 0, addr1, addr3, stri⊕τ4;

9) update TD[str] := TD[str]|haddr,stri| ⊕
hτ3, addr1i;
10) obtain an updated graph Ω0

G and rebuild
σ;

b) Deleting existing edges
At the client C:
1) u contains information about the existing
edge (v1, v2) to be deleted;
2) compute τu := (Pk1

(hv1, v2i), Fk2
(hv1, v2i))

;
C ) S : outputs τu to the server;
At the server S:
1) parse τu as (τ1, τ2) and return ? if τ1 is not
in TD;
2) look up in TD and computes
hstr1, addr1, addr2, addr3, str3i := TD[τ1]⊕τ2;
3) compute haddr4, 0i := TG[free];
4) free the node and set AG[addr2] :=
h0, addr4i;
5) update the pointer TG[free] := haddr2, 0i;
6) parse AG[addr1] as hN

0
1, r1i;

7) update node AG[addr1] := hN01 ⊕ addr2 ⊕
addr3, r1i;
8) update the corresponding entry TD[str1] :=
TD[str1]⊕ haddr2, τ1i ⊕ haddr3, str3i;
9) update the corresponding entry TD[str3] :=
TD[str3]⊕ haddr2, τ1i ⊕ haddr1, str1i;
10) obtain an updated graph Ω0

G and rebuild
σ;

To add new edges, the client generates the corresponding token ⌧u for an
update object u and sends it to the server. After receiving ⌧u, the server locates
the first free node addr1 in the array AG, and modifies the pointer in TG to point
to the second one. Later, the server retrieves the high-order useful information
(without the key Kv1

) of the head node N1, stores N that represents the newly
edge at location addr1 and modifies its pointer to point to the original head
node N1 without decryption. Then, the server updates the pointer in TG to
point to the newly-added node, and finally updates the corresponding entries in
the dictionary TD. To remove the existing edges, the client generates the update
token ⌧u and submits it to the server. Subsequently, the server looks up in the
TD and recovers the adjacency information of the specified edge. In the following
steps, the server frees the node, inserts it into the head of the free list and then
homomorphically modifies the pointer of the previous node to point to the next
node in AG. Eventually, the server updates the related entries in the dictionary
TD. Note that modifying a specified edge can be easily achieved by removing
the “old” edge first, and adding a “new” edge with the modified length later.
After the encrypted graph has been updated, the old query history is deleted
and a new empty history will be rebuilt simultaneously.
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4.5 Performance Analysis

The time cost of initialization phase is dominated by encrypting all the edges us-
ing Paillier cryptosystem and processing all the vertices to obtain the encrypted
dictionary, thus the time complexity of this part is O(m+n), wherem is the num-
ber of edges and n is the number of vertices in the original graph. The generated
encrypted graph, which consists of an array and two dictionaries, has the storage
complexity O(m+n) at the server side. In the query phase, we use the Fibonacci
heap to speed up the Dijkstra’s algorithm in a private manner, where each iter-
ation to find a vertex in the shortest path requires one Extract-MIN operation.
In addition, each edge which satisfies the inequality in line 35 of Algorithm 2
requires either an Insert or a Decrease-Key operation. There are at most (n− 1)
Extract-MIN operations, (n− 1) Insert operations and (m− n+ 1) Decrease-Key
operations in total. Thus, we obtain an O(n log n+m) time complexity which is
optimal among other priority queue optimization techniques (e.g., binary or bi-
nomial heap) [14]. By maintaining an auxiliary structure history σ at the server,
we can have an even better amortization time complexity over multiple queries,
i.e., the query time for subsequent queries that can be looked up in the history
are (almost) constant. It is obvious that the time complexity for both addition
and removal operations on the encrypted graph are only O(1).

During the execution of the secure comparison protocol, the computation
and communication costs between the server and the proxy are directly related
to the number of gates in the comparison circuit. As we discussed above, many
expensive operations of the garbled comparison circuits can be pushed into a
pre-computation phase, and thus most of the computation cost will be relieved
from the query phase. On the other hand, the communication cost in the offline
computation phase (pre-computation) is dominated by the transfer of the cir-
cuits. More concretely, the server transmits (6k + 3l)t bits for each comparison
circuit. Besides, about 6kt bits cost for transmitting garbled inputs are incurred
in the online (query) phase, where t is the bit length of a garbled value for a
wire. The communication cost of the OT protocol is omitted here since it only
needs to be performed a constant number of times (see Section 4.3).

5 Security

We allow reasonable leakage to the server to trade it for efficiency. Now, we pro-
vide a formal description of the three leakage functions L1, L2 and L3 considered
in our scheme as follows.

– (Leakage function L1). Given a graph G, L1(G) = {n,m,#AG}, where n is
the total number of vertices, m is the total number of edges in the graph G

and #AG denotes the number of entries (i.e., m+ z) in the array AG.
– (Leakage function L2). Given a graph G, a query q, L2(G, q) = {QP(G, q),AP

(G, q)}, where QP(G, q) denotes the query pattern and AP(G, q) denotes the
access pattern, both of which are given in the following definitions.
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– (Leakage function L3). Given a graph G, an update object u, L3(G, u) =
{idv, idnew, next} is for add updates, and L3(G, u) = {iddel, next, prev} is for
delete updates, where idv denotes the identifier of the start vertex in the
newly edge, idnew and iddel denote the identifiers of the edges to be added
and deleted, respectively. prev and next contain the neighboring information
(i.e., the identifiers of the neighboring edges) of the edge to be updated. If
there are no nodes in AG before and after the edge to be updated then prev
and next are set to ?.

Definition 3. (Query Pattern). For two shortest distance queries q = (s, t), q0 =
(s0, t0), define sim(q, q0) = (s = s0, s = t0, t = s0, t = t0), i.e., whether each of the
vertices in q matches each of the vertices in q0. Let q = (q1, . . . , qδ) be a sequence
of δ queries, the query pattern QP(G, q) induced by q is a δ ⇥ δ symmetric ma-
trix such that for 1  i, j  δ, the element in the ith row and jth column equals
sim(qi, qj). Namely, the query pattern reveals whether the vertices in the query
have appeared before.

Definition 4. (Access Pattern). Given a shortest distance query q for the graph
G, the access pattern is defined as AP(G, q) = {id(cq), id(cq)

0, id⇤(cq)}, where
id(cq) denotes the identifiers of vertices in the encrypted result cq, id(cq)

0 denotes
the identifiers of vertices contained in the dictionary path and it reveals the
subgraph consisting of vertices reachable from the source (id(cq) ⇢ id(cq)

0), and
id⇤(cq) denotes the identifiers of the edges with one of its endpoints is the head
node of retrieved adjacency lists.

Discussion. Trading security for efficiency is a common practice in SSE de-
signs. We follow the state-of-the-art of SSE solutions [9, 8, 28, 27, 7, 47, 20] to
allow limited information to be revealed for higher efficiency. In practice, the
query pattern implies whether a new query has been issued before, and the
access pattern discloses the structural information such as graph connectivity
associated with the query. The leakage is not revealed unless its corresponding
query has been issued. This is similar to keyword-based SSE schemes, where the
leakage (i.e., patterns associated with a keyword query) is revealed only if the
corresponding keyword is searched. Fortunately, we can guarantee some level of
privacy to the original graph (e.g., structural information) with slightly lower
efficiency in our setting. To be specific, we can add some form of noise (i.e.,
padding carefully designed fake entries [9, 8, 28] to each original adjacency list)
during the generation of the encrypted graph. Hence, some leakage information
(i.e., the accurate number of edges in the original graph and the adjacency in-
formation of each vertex) can be mitigated. Moreover, in various application
scenarios where the data may be abstracted and modeled as sparse graphs (see
Table 2), the leakage would not be a big problem. Fully protecting the above two
patterns (also forward privacy defined in [47]) without using expensive ORAM
techniques remains an open challenging problem, which is our future research
focus.
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Dataset Type Vertices Edges Storage

Talk directed 2,394,385 5,021,410 63.3 MB
Youtube undirected 1,134,890 2,987,624 36.9 MB
EuAll directed 265,214 420,045 4.76 MB

Gowalla undirected 196,591 1,900,654 21.1 MB
Vote directed 7,115 103,689 1.04 MB
Enron undirected 36,692 367,662 3.86 MB

Table 2: The characteristics of datasets.

Dataset Time (min.)
Storage (MB)

TG TD AG Total

Talk 1042.1 3.6 172.3 1460.5 1636.4
Youtube 460.6 8.93 102 874 984.93
EuAll 76.8 5.37 14.4 122 141.77

Gowalla 307.77 4.69 65.24 556.42 626.35
Vote 17.8 0.14 3.55 30.3 33.99
Enron 69.4 0.88 12.6 107 120.48

Table 3: The cost of initialization phase.

Theorem 1. If Paillier cryptosystem is CPA-secure and P , F and G are pseudo-
random, then the encrypted graph query database system is adaptively (L1,L2,L3)-
semantically secure in the random oracle model.

Due to the space limitation, please refer to the Appendix for the proof The-
orem 1.

6 Experimental Evaluation

In this section, we present experimental evaluations of our dynamic graph en-
cryption scheme on a number of large-scale graphs. The experiments are per-
formed on separate machines with different configurations. Concretely, the client
runs on a machine with an Intel Core CPU with 4-core operating at 2.90GHz
and equipped with 12GB RAM, and runs a Windows 10 operating system. Both
the server and the proxy run on machines with an Intel Xeon CPU with 24-
core operating at 2.10GHz and equipped with 128GB RAM and running Linux.
We implemented algorithms described in Section 4 in Java, used HMAC for
PRF/PRPs and instantiated the random oracle with HMAC-SHA-256 (both are
contained in the default Java library). Our secure comparison protocol is built on
top of FastGC [23], a Java-based open-source framework that enables develop-
ers to define arbitrary circuits. Several optimizations (i.e., free-XOR technique,
reduction of garbled tables and OT extension) discussed in the previous sections
have been provided by the framework.

Our implementation used the following parameters: in the initialization phase,
we use Paillier cryptosystem with a 1024-bit modulus. In the secure comparison
protocol, the bit length allocated for the diameter l is 16 and the bit length
of each random mask is 32. Besides, the FastGC framework provides a 80-bit
security level; namely, it uses 80-bit wire labels for garbled circuits and security
parameter c = 80 for the OT extension.

6.1 Datasets

We used real-world graph datasets publicly available from the Stanford SNAP
website (available at https://snap.stanford.edu/data/), and selected the follow-
ing six representative datasets including both directed and undirected graphs,
with the scale ranging from thousands to millions of vertices and edges: wiki-
Talk, a large network extracted from all user talk pages; com-Youtube, a large
social network based on the Youtube web site; email-EuAll, an email network
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Phase Offline Online

Time/Bandwidth s KB s KB

Garbled circuits 1.26 3357.47 0.66 None

Oblivious transfer 0.454 21.91 1.23 1943.34

Table 4: The cost of secure comparison protocol.

generated from a European research institution; loc-Gowalla, a location-based
social network; wiki-Vote, a network that contains all the Wikipedia voting da-
ta; and email-Enron, an email communication network. Table 2 summarizes the
main characteristics of these datasets.

6.2 Experimental results

Table 3 shows the performance of the initialization phase (one-time cost) includ-
ing the time to setup encrypted graphs as well as the corresponding storage cost.
As can be seen, the time to encrypt a graph ranges from a few minutes to sev-
eral hours which is practical. For example, it takes only 17.4 hours to obtain an
encryption of the wiki-Talk graph including 2.4 million vertices and 5.1 million
edges. Besides, we note that this phase is highly-parallelizable; namely, we bring
the setup time down to just over 30 minutes by utilizing a modest cluster of 32
nodes. Furthermore, the storage cost of an encrypted graph is dominated by AG

with the total size ranging from 33.99MB for wiki-Vote to 1.60GB for wiki-Talk.
We also note that our construction has less storage space requirements compared
to Meng et al. [38] (e.g., 2.07GB for com-Youtube in [38], whereas our scheme
takes 984.93MB).

We first measured the time to query an encrypted graph without query his-
tory stored on the server. To simulate realistic queries that work in a similar
manner with [20], we choose the query vertices in a random fashion weighted
according to their outdegrees; that is, the probability of being selected grows
with the number of outdegrees. The average time at the server (taken over 1,000
random queries) is given in Figure 4(a) for all encrypted graphs. In general,
the results show that the query time ranges from 20.4s for wiki-Vote to 46.4
minutes for wiki-Talk. The computation at the proxy side in the shortest dis-
tance query phase mainly consists of the homomorphic decryptions and the com-
parison circuit evaluations. Additionally, we can obtain an order-of-magnitude
improvement in both computation time and bandwidth by using the packing
optimization presented in Section 4.3. The actual time for the client to generate
the token and decrypt the encrypted result per each query is always less than
0.1s which is very fast. In addition, about 1.5KB communication overhead is
required to transfer the token and the encrypted result for each query.

Next, the performance of the query phase with the help of history stored on
the server is illustrated in Figure 4(b) and 4(c), and a block of 1,000 random
executions results in one measurement point in both figures. In Figure 4(b), the
y-axis represents the ratio of the average query time using history to that with-
out using history. Generally, it reflects that the average query time decreases
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ed by generating an encryption of the length of the edge to be updated (roughly
10ms), while the server side has a negligible running time. Similar results can
be obtained in Figure 5(b) for the delete updates. It only needs about 0.25ms to
delete a specified edge, and the time to generate the delete token at the client
side dominates the time cost of the entire process. In addition, about 0.3KB and
tens of bytes are consumed when performing adding and deleting operations,
respectively.

7 Conclusion

In this paper, we designed a new graph encryption scheme–SecGDB to encrypt
graph structures and enforce private graph queries. In our construction, we used
additively homomorphic encryption and garbled circuits to support shortest dis-
tance queries with optimal time and storage complexities. On top of this, we
further proposed an auxiliary data structure called query history stored on the
remote server to achieve better amortized time complexity over multiple queries.
Compared to the state-of-the-art, SecGDB returns the exact distance results
and allows efficient graph updates over large-scale encrypted graph database.
SecGDB is proven to be adaptively semantically-secure in the random oracle
model. We finally evaluated SecGDB on representative real-world datasets, show-
ing its efficiency and practicality for use in real-world applications.
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Appendix

Proof Sketch: We describe a polynomial time simulator S such that for any PP-
T adversary A, the outputs of RealA(λ) and IdealA,S(λ) are computationally
indistinguishable. Consider the simulator S that works as follows.

[Setup] Given L1(G) = {n,m,#AG}, S constructs the simulated graph e⌦G as

below. To simulate TG, it generates a dictionary eTG of size n + 1 and for all
i 2 [n+ 1], stores a random (log#AG + 2λ)-bit string e⌫i in eTG under a random

λ-bit key ei. To simulate AG, it generates an array eAG of size m+z and fills m of
these cells (chosen at random) with random strings of size (2 log#AG +4λ+ `)-
bit, where ` denotes the bit length of ciphertext in Paillier cryptosystem, the rest
cells are marked as free. To simulate TD, it generates a dictionary eTD of size
m and for all i 2 [m], adds a random (3 log#AG + 2λ)-bit string e⌫0i associated
with a random λ-bit key e0i. Besides, let RO be an empty dictionary. Finally, it

outputs the simulated graph e⌦G = (eTG, eAG, eTD).

[Simulating DistanceQuery] Given L2(G, q) = {QP(G, q),AP(G, q)} to simulate
query token ⌧q, S first checks if either of the query vertex s or t has appeared
before. If s appeared previously, S sets e⌧1 and e⌧3 to the values that were previ-
ously used. Otherwise, S sets e⌧1 := ei for some previously unused ei and e⌧3 as
follows. It chooses a previously unused cell in eAG at random with its location
addr, a random λ-bit string str (marked with the identifier in id⇤(cq)), a ran-

dom λ-bit string K, and sets e⌧3 := eTG[ei]⊕ haddr, str,Ki. It then records the
association between K and the related adjacency list (i.e., marks corresponding

cells in eAG with the related identifiers in id(cq)
0). In addition, S does analogous-

ly for the remaining identifiers appeared in id(cq). For the query vertex t, if it
appeared previously, S sets e⌧2 to the value that were previously used, otherwise
sets e⌧2 := ei for some previously unused ei. Finally, S outputs the simulated
token e⌧q = (e⌧1, e⌧2, e⌧3).

[Simulating UpdateQuery] For add updates, S is given leakage L3(G, u) = {idv,
idnew, next} to simulate the update token ⌧u. If the idnew has been added in the
past, it just sets (e⌧1, e⌧2, e⌧3, e⌧4) that were previously used. On the other hand, if
idv has appeared before, it sets e⌧1, e⌧2 that were previously used, else it first sets
e⌧1 := ei for some previously unused ei, then it chooses a previously unused cell
in eAG at random with its location addr1, a random λ-bit string str1 (marked

with the identifier in next), and sets e⌧2 := eTG[ei]
|haddr1,str1i| ⊕ haddr1, str1i. In

the following, S simulates e⌧3 := e0i, where e0i is a random λ-bit string marked
with idnew, simulates e⌧4 := e⌫0i, where e⌫0i is a random (3 log#AG + 2λ)-bit string
associated with e0i. S finally samples a (2 log#AG + 4λ + `)-bit string at ran-
dom as e⌧5 and outputs the simulated token e⌧u = (e⌧1, e⌧2, e⌧3, e⌧4, e⌧5). Similarly, S
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simulates the token e⌧u for delete updates.

[Answering H queries] Given query (K, r), S checks if this query was submitted
before, if this is the case, it returns ρ := RO[hK, ri] immediately. Otherwise,
S checks if K has been associated with an adjacency list, if so, it finds all the
related entries in eAG, and parses each entry as the form hN0, ri, then it returns
N
0 ⊕ hα1,α2,α3,α4i, where α1 is the identifier of the entry associated with K,

α2 is the string matched with α1, α3 is a Paillier encryption of 0 and α4 is an
unused address in eAG chosen at random or NULL (the last entry). If not, it re-
turns a random |ρ|-bit string and stores it in RO under the key hK, ri to stay
consistent on future queries.

In summary, the indistinguishability of eΩG from ΩG follows from the pseudo-
randomness of P , F and G and the CPA-security of Paillier cryptosystem. The
indistinguishability of eτq follows from the pseudo-randomness of P and F and
that of eτu from the pseudo-randomness of P , F and the CPA-security of Paillier
cryptosystem.


